Synthesis and Copolymerisation of a-Acrylic Acids and Esters

By GARTH W. HASTINGS[†]

(Leerstoel Macromoleculaire Chemie en Technologie, T. H. Twente, Enschede, Netherlands)

Summary Copolymerisation of alkyl- and substituted alkyl-acrylic acids with styrene is successful provided that very pure monomers are used.

MODEL compounds for the study of the physiological mechanisms associated with calcification of tissues, have included α -substituted acrylic monomers. The substituents are alkyl, or alkyl terminated in a functional group, e.g. OH, NH_2 . The usefulness of monomers of this type for producing biomedical materials has already been discussed.1,2

notoriously difficult. Crawford was unsuccessful, and apart from a high-temperature⁴ and a high-pressure method,⁵ only one report has been published, describing anionic initiation.⁶ I report successful copolymerisation of very pure monomers with very pure styrene as co-monomer, using azoisobutyronitrile as initiator. Monomer purity was established by g.l.c. Polymerisation was performed under high vacuum, in sealed tubes, at 70°. Monomer reactivity ratios are listed in the Table Alkyl substituents larger than hexyl have been introduced.

Homopolymerisation with free-radical initiator was not

		TABLE			
	Molar ratio acid : styrene (monomer	Molar ratio acid : styrene (polymer	<i>r</i> ₁	r ₂	<i>r</i> ₁ <i>r</i> ₂
Ethylacrylic acid	2·24 1·12 0·56 0·18	1.03 0.84 0.53 0.15 benzene			
n-Pronvlacrulic acid	0.97	sol. fraction 0.13 benzene isol. fraction 0.55	0.31 ± 0.01	0.68 ± 0.01	0.21
n-rropylaciyile acid	0·48 0·10	0.00 0.62 0.13	0.68 ± 0.08	$\textbf{0.725} \pm \textbf{0.005}$	0.48
n-Butylacrylic acid	0·85 0·43	0.78 0.52 benzene sol. fraction 0.68 benzene isol. fraction			
	0.09	0.12	0.32 ± 0.04	0.52 ± 0.01	0.16
Methacrylic acid 60°		_	0.7 ± 0.01	0.15 ± 0.05	0.102
Acrylic acid 60°			0.25 ± 0.02	0.15 ± 0.01	0.038

 α -Alkyl substituted monomers were synthesised from diethyl malonate by a modification of the method of Crawford and Swift,3 the reaction of alkyl halides with the sodiomalonate, followed by a Mannich reaction. I.r. spectra confirmed the presence of a vinylic double bond. Polymerisation of α -alkyl substituted acrylics is

successful. γ -Irradiation produced insignificant changes in the refractive index of the monomers. The sodioderivative of naphthalene readily produced a solid polymer not yet characterised.

(Received, July 11th, 1969; Com. 1029.)

† Permanent address: Department of Polymer Science, University of New South Wales, Sydney, Australia.

- ¹ B. Bloch and G. W. Hastings, "Plastics in Surgery," ch. 6, Charles C. Thomas, Springfield, Illinois, 1968. ² K. C. Tsou, "Synthesis and Evaluation of a Polymerizable Phosphate-containing Monomer for Adhesion to Tooth Structure." Adhesive and Restorative Dental Materials, eds. R. W. Philips, G. Ryge, 1961. ⁸ J. W. C. Crawford and S. D. Swift, J. Chem. Soc., 1952, 1220; J. W. C. Crawford, *ibid.*, p. 2658.

⁴ N. V. de Bataafsche Petroleum Maatschappij, Dutch P. 73,429; Oct. 15th, 1953.
⁵ W. A. Holmes-Walker and K. E. Neale, *J. Chem. Soc.*, 1955, 2295.
⁶ Y. Chikamishi and T. Tsurata, *Makromol. Chem.*, 1964, 73, 231; 1965, 81, 198.